zoom ID: 949 5980 5461. Password: the last four digits of the zoom ID in the reverse order
I will speak about an unusual way to correct the (invalid) endpoint case of the Hardy—Littlewood—Sobolev inequality. Usually the correction is done by imposing additional linear constraints on the function we apply the Riesz potential to. Being the gradient of another function is an example of such a constraint. The inequalities obtained this way are often called Bourgain—Brezis inequalities. In 2010, Maz’ya suggested another approach: instead of constraining the right hand side we should replace the L_p norm on the left with an expression \Phi, which alongside with having the same homogeneity properties as the L_p norm, possesses additional cancellations. He conjectured that if \Phi satisfies a natural necessary condition, then the modified Hardy—Littlewood—Sobolev inequality holds true. I will try to survey the proof of Maz’ya’s conjecture. Based on https://arxiv.org/abs/2109.08014
zoom ID: 949 5980 5461. Password: the last four digits of the zoom ID in the reverse order
Strong law of large numbers gives a method to estimate the
average of a function on the Boolean cube so that it is accurate with
high probability. But there is still a little risk that it is
inaccurate. I will present a polynomial time method to estimate the
averages of certain functions on Boolean cube without risk of being
inaccurate.
zoom ID: 949 5980 5461. Password: the last four digits of the zoom ID in the reverse order
We prove an almost tight upper bound on the ratio ||f||_p / ||f||_2, when f is a polynomial of a given degree on the Boolean cube {0,1}^n and describe some applications. In particular, we describe a family of hypercontractive inequalities for functions on {0,1}^n which take into account the concentration of a function.
Maximal functions play a central role in the study of differentiation,
singular integrals and almost everywhere convergence. With Sergey Tikhonov
(ICREA, Barcelona) we recently proved some pointwise estimates for maximal
functions in terms of smoothness and rearrangements. I plan to discuss the recent
progress on these topics and some applications. In particular, I will discuss the
Fefferman-Stein inequality for the sharp maximal function for r.i. spaces which
are close to L∞.
Abstract: I will present an overview of the multilinear restriction theory, with an emphasis on the case when the hypersurfaces have some curvature. I will discuss a new result: the case of n-1 hypersurfaces in n dimensions where a fairly general theory is developed.
Selberg-type integrals that can be turned into constant term identities for Laurent polynomials arise naturally in conjunction with random matrix models in statistical mechanics. We discuss a general method based on the multi-dimensional polynomial interpolation identity related to the so called Combinatorial Nullstellensatz of Alon that is powerful enough to establish many such identities, both known before and new, in a simple manner. Based on joint works with R. Karasev, G. Karolyi, Z. Nagy and V. Volkov.
We consider a family of dense $G_{\delta}$ subsets of $[0,1]$, defined as intersections of unions of small uniformly distributed intervals, and study their capacity. Changing the speed at which the lengths of generating intervals decrease, we observe a sharp phase transition from full to zero capacity. Such a $G_{\delta}$ set can be considered as a toy model for the set of exceptional energies in the parametric version of the Furstenberg theorem on random matrix products.
The same mass re-distribution construction that we use to obtain a full capacity statement, allows us to construct another counter-example to a conjecture by Nevanlinna.
Let a_ij be a finite collection of real numbers, and let s_i and s_j be spins (they take only two values +1 or -1). The goal is to choose the spins s_i and s_j so that to maximize the double sum a_ij s_i s_j, where the summation runs over all indecies from 1 to n such that i does not qual to j. If a_ij =1 then the sum is maximized if all spins have the same sign which gives the result to be of order n^2. However, if a_ij=-1 then the sum is maximized when half of the spins take value 1 and the other half -1. When a_ij are arbitrary real numbers this becomes a nontrivial problem (also known as Dean's problem). The problem is well understood in average when a_ij are i.i.d symmetric +1 or -1 random vairables (the Sherrington--Kirkpatrick model). We will speak about possible lower bounds of the maximum in terms of arbitrary real numbers a_ij, its extensions to d-spin case, some conjectures in this area, and their applications in quantum computing.
Courant's theorem states that the k-th eigenfunction of the Laplace operator on a closed Riemannian manifold has at most k nodal domains. Given a ball of radius r, we will discuss how many of nodal domains can intersect a ball (depending on r and k). Based on a joint work (in progress) with S.Chanillo and E.Malinnikova.
Let K be a convex body with volume one and barycentre at the origin.
How small is the volume of the intersection of K and -K? I shall
discuss such lower bounds and present applications to the Hadwidger
covering/illumination conjecture. Based on joint work with H. Huang,
B. Slomka and B. Vritsiou.