Speaker: 

Fedor Petrov

Institution: 

Steklov Institute of Mathematics at St. Petersburg

Time: 

Monday, February 10, 2020 - 3:00pm to 3:50pm

Host: 

Location: 

RH 306

Selberg-type integrals that can be turned into constant term identities for Laurent polynomials arise naturally in conjunction with random matrix models in statistical mechanics. We discuss a general method based on the multi-dimensional polynomial interpolation identity related to the so called Combinatorial Nullstellensatz of Alon that is powerful enough to establish many such identities, both known before and new, in a simple manner. Based on joint works with R. Karasev, G. Karolyi, Z. Nagy and V. Volkov.