I will explain several conjectures and results regarding the slope distribution of Up operator action on the space of modular forms. Most notably, we prove that the slopes of modular forms with a highly p-divisible characters roughly form unions of arithmetic progressions. This is a joint work with Daqing Wan and Jun Zhang.
When a holomorphic modular form is a newform, its L-function has nice analytic properties and associates a cuspidal automorphic representation, which is a restricted product of local representations. To recover the newform from the representation, Casselman considered the fixed line of the congruence subgroups of GL(2) at the conductor level on the local representations. A vector on this line shall encode the conductor, the L-function and the \epsilon-factor of the representation. This is called the theory of newforms for GL(2). Similar theory has been established for some groups of small ranks as well as GL(n). In this talk I will introduce one for SO(2n+1).
We construct the Eichler-Shimura morphisms for families of overconvergent modular forms via Scholze's theory of pro-etale site, as well as the Hodge-Tate period maps on modular curves of infinite level. We follow some of the main ideas in the work of Andreatta-Iovita-Stevens. In particular, we reprove the main result in their paper. Since we work entirely on the generic fiber of the modular curve, log structures will not be needed if we only consider the Eichler-Shimura morphism for cusp forms. Moreover, the well-established theory of the Hodge-Tate period map for Shimura varieties of Hodge type may allow us to generalize the construction to more general Shimura varieties. This is a joint work with Hansheng Diao.
This talk will explain some ways Iwasawa theory can be used to show that
elliptic curves have rank one when the ranks of the p-adic Selmer groups also predict this.
I will discuss a number of related conjectures concerning the rational points of varieties (especially curves and abelian varieties) over fields with finitely generated Galois group and present some evidence from algebraic numebr theory, Diophantine geometry, and additive combinatorics in support of these conjectures.
Shimura varieties are defined over complex numbers and generally have number fields as the field of definition. Motivated by an example constructed by Mumford, we find conditions which guarantee a curve in char. p lifts to a Shimura curve of Hodge type. The conditions are intrinsic in positive characteristics and thus they shed light on a definition of Shimura curves in positive characteristics.
In this talk, I will start with modular curves, and discuss the moduli interpretation of Shimura curves. Then I will present such a condition in terms of isocrystals. Time permitting, I would show a deformation result on Barsotti-Tate groups, which serves as a key step in the proof.
We define a collection of special 1-cycles on certain Shimura 3-folds associated to U(2,1) x U(1,1) and appearing in the context of the Gan--Gross--Prasad conjectures. We study and compare the action of the Hecke algebra and the Galois group on these cycles via distribution relations and congruence relations that would ultimately lead to the construction of a novel Euler system for these Shimura varieties. The comparison is achieved adelically using Bruhat--Tits theory for the corresponding buildings.
Contrary to their classical namesakes over the ring of integers, Pell equations over function rings in characteristic zero need not have infinitely many solutions. How often this occurs has been the theme of recent work of D. Masser and U. Zannier. The case of smooth curves is governed by the relative Manin-Mumford conjecture on abelian schemes. We pursue this study by considering singular curves and the associated generalized jacobians.
We will discuss the question of defining a p-adic L-function and formulating a main conjecture for an Artin representation. The case where the Artin representation is totally even (or odd) is classical. The corresponding main conjecture has been proven by Wiles. This talk will discuss the special case where the representation is 2-dimensional, but not totally even or odd. As we will explain, under certain assumptions, there are two p-adic L-functions, two Selmer groups, and two main conjectures. This talk is about joint work with Nike Vatsal.
We will introduce the notion of slope filtration through examples, including the Harder-Narasimhan filtration on finite flat group schemes due to Fargues. We will then introduce Kisin modules, a certain generalization of finite flat group schemes, and describe a slope filtration on Kisin modules. This is joint work with Brandon Levin.