Let K be a local field with residue field of characteristic p>0. Our goal is to understand the cyclic extensions of K of degree a power of p. If K has characteristic 0 and contains a p^m-th primitive root of unity, then one can use class field theory and Kummer theory to construct a symbol which helps us to understand the ramification of cyclic extensions of degree p^m. If K has characteristic p, then one can construct a symbol, using class field theory and Artin-Schreier-Witt theory, which helps us to understand the cyclic extensions of degree p^m for any m. We will discuss both symbols in more detail and discuss methods for computing these symbols.
There is a classical theorem of Iwasawa which concerns certain modules X for the formal power series ring Λ = Zp[[T]] in one variable. Here p is a prime and Zp is the ring of p-adic integers. Iwasawa's theorem asserts that X has no nonzero, finite Λ-submodules. We will begin by describing the modules X which occur in Iwasawa's theorem and explaining how the theorem is connected with the title of my talk. Then we will describe generalizations of this theorem for certain Λ-modules (the so-called "Selmer groups") which arise naturally in Iwasawa theory. The ring Λ can be a formal power series ring over Zp in any number of variables, or even a non-commutative analogue of such a ring.
While the sequence of primes is very well distributed in the reduced residue classes (mod q), the distribution of pairs of consecutive primes among the permissible pairs of reduced residue classes (mod q) is surprisingly erratic. We propose a conjectural explanation for this phenomenon, based on the Hardy-Littlewood conjectures, which fits the observed data very well. We also study the distribution of the terms predicted by the conjecture, which proves to be surprisingly subtle. This is joint work with Kannan Soundararajan.
In the last several years, there has been significant theoretical progress on understanding the average rank of all elliptic curves over Q, ordered by height, led by work of Bhargava-Shankar. We will survey these results and the ideas behind them, as well as discuss generalizations in many directions (e.g., to other families of elliptic curves, higher genus curves, and higher-dimensional varieties) and some corollaries of these types of theorems. We will also describe recently collected data on ranks and Selmer groups of elliptic curves (joint work with J. Balakrishnan, N. Kaplan, S. Spicer, W. Stein, and J. Weigandt).
The overconvergent modular symbols of Stevens provide a natural framework for computing p-adic L-functions of newforms, but the modular symbols (and p-adic L-functions) attached to ordinary Eisenstein series are essentially trivial. Working with a larger space of pseudo-distributions, we construct non-trivial Eisenstein symbols and compute their p-adic L-functions. As a corollary, we compute the p-adic L-function of the "evil twin" Eisenstein series of critical slope. If time permits, I'll discuss work in progress on computing the symmetric square p-adic L-function at Eisenstein points on the eigencurve, as well as applications.
By studying the variation of motivic path torsors associated to a variety, we show how certain non-density assertions in Diophantine geometry can be reduced to problems concerning K-groups. Concrete results then follow based on known (and conjectural) vanishing theorems.
The classic Linear Preserver Problem asks to determine, for a polynomial function f on a vector space V, the linear transformations g of V such that fg = f. In case f is invariant under a simple algebraic group G acting irreducibly on V, we prove that the subgroup of GL(V) stabilizing f often has identity component G and we give applications realizing various groups, including the largest exceptional group E8, as automorphism groups of polynomials and algebras. We show that starting with a simple group G and an irreducible representation V, one can almost always find an f whose stabilizer has identity component G and that no such f exists in the short list of excluded cases. The main results are new even in the special case where the field is the complex numbers, and have implications for Hasse principles for polynomials over number fields. This talk is about joint work with Bob Guralnick.
We explore possible stable properties of the sequence of
zeta functions associated to a geometric Z_p-tower of curves over
a finite field of characteristic p, in the spirit of Iwasawa theory.
Several fundamental questions and conjectures will be discussed,
and some supporting examples will be given. This introductory talk
is accessible to graduate students in number theory and arithmetic
geometry.