On the Geometry of the Orbits of Hermann actions

Speaker: 

Professor Oliver Goertsches

Institution: 

UCI

Time: 

Tuesday, April 29, 2008 - 4:00pm

Location: 

MSTB 254

We investigate the submanifold geometry of Hermann actions on Riemannian symmetric spaces. After proving that the curvature and shape operators of these orbits commute, we calculate the eigenvalues of the shape operators in terms of the restricted roots of the symmetric space. As an application, we obtain an explicit formula for the volumes of the orbits.

This is joint work with Gudlaugur Thorbergsson.

Gromov-Witten Theory, Frobenius structures, and Integrable Hierarchies

Speaker: 

Professor Hsiang-Hua Tseng

Institution: 

Wisconsin

Time: 

Thursday, April 10, 2008 - 4:00pm

Location: 

MSTB 254

Topological field theories have long been expected to be closely related to integrable systems. A famous conjecture of Witten (proven by Kontsevich and others) states that the generating function of descendant integrals on the moduli spaces of curves is a solution to the KdV hierarchy. As a generalization of this result one may speculate a relationship between Gromov-Witten theory and integrable systems. In this talk we give a survey on this conjectural relationship and discuss some (very) low dimensional examples.

Lines and asymptotic lines of projective varieties

Speaker: 

Professor Joseph Landsberg

Institution: 

Texas A&M University

Time: 

Tuesday, June 3, 2008 - 4:00pm

Location: 

MSTB 254

Let $X^n\subset \Bbb C\Bbb P^{n+1}$ be a hypersurface defined as the zero set of a degree $d$ polynomial with $d\leq n$. Such hypersurfaces have lines through each point $x\in X$. Let $\mathcal C_x\subset \Bbb P(T_xX)$ denote the set of tangent directions to lines on $X$ passing through $x$. Jun-Muk Hwang asked how $\mathcal C_x$ varies as one varies $x$. The answer turns out to be interesting, with two natural exterior differential systems governing the motion. In addition to describing these EDS and some immediate consequences, I will also discuss applications to questions in computational complexity and algebraic geometry. This is joint work with C. Robles.

From Hitchin's G_2 Spectral Curves to Finite Type Associative Cones

Speaker: 

Professor Erxiao Wang

Institution: 

Singapore National University

Time: 

Tuesday, February 26, 2008 - 4:00pm

Location: 

MSTB 254

We will establish a bijective correspondence between finite type associative cones in $\R^7$ and their spectral data, which consists of a hexagonal algebraic curve and a planar flow of line bundles in its Jacobian. We characterize the spectral data by identifying various symmetries on them. We prove generic smoothness of these spectral curves, compute their genus, and compute the dimension of the moduli of such curves. Then we identify a Prym-Tjurin subtorus of the Jacobian, in which the direction of the flow must lie, and compute its dimension. Finally we characterize finite type special Lagrangian cones in $\C^3$ as a subclass of such associative cones in terms of the spectral data. These computations are mainly motivated by Hitchin's recent work on G_2 spectral curves and Langland duality.

Higher dimensional Schrodinger flow into Grassmannians

Speaker: 

Professor Bo Dai

Institution: 

Peking University

Time: 

Tuesday, January 22, 2008 - 4:00pm

Location: 

MSTB 254

Schrodinger flow is the Hamiltonian flow for energy functional on the space of maps from a Riemannian manifold into a Kahler manifold. I'll talk about some background on this flow, then focus on the special case of maps from a Euclidean space into the complex Grassmannian Gr(k,C^n). Terng and Uhlenbeck proved that Schrodinger flow of maps from R^1 into complex Grassmannian is gauge equivalent to the matrix nonlinear Schrodinger equation. Using this gauge equivalence and the result of Beals and Coifman, they obtained the global existence of Schrodinger flow with rapidly decay initial data. Applying the method of Terng and Uhlenbeck, we will see that Schrodinger flow of radial maps from R^m into the complex Grassmannian is gauge equivalent to a generalized matrix nonlinear Schrodinger equation. When the target is the 2-sphere, the gauge equivalence was studied by Lakshmanan and his colleagues by different method. They also observed that if the domain is R^2, then the corresponding matrix nonlinear Schrodinger equation is an integrable system.

On the $\sigma_2$-scalar curvature and its application

Speaker: 

Professor Yuxin Ge

Institution: 

University Paris 12 & U. Washington

Time: 

Tuesday, March 11, 2008 - 4:00pm

Location: 

MSTB 254

In this talk, we establish an analytic foundation for a fully non-linear equation $\frac{\sigma_2}{\sigma_1}=f$ on manifolds with positive scalar curvature. This equation arises from conformal geometry. As application, we prove that, if a compact 3-dimensional manifold $M$ admits a riemannian metric with positive scalar curvature and $\int
\sigma_2\ge 0$, then topologically $M$ is a quotient of sphere.

Pages

Subscribe to RSS - Differential Geometry