Speaker:
Institution:
Time:
Location:
Cayley 4-folds are calibrated (and thus minimal) submanifolds in R^8 associated to a Spin(7) structure. Cayley cones in R^8 that are ruled by oriented 2-planes are equivalent to pseudoholomorphic curves in the grassmanian of oriented 2-planes G(2,8). The twistor fibration G(2,8) -> S^6 is used to prove the existence of immersed higher-genus pseudoholomorphic curves in G(2, 8). These give rise to Cayley cones whose links have complicated topology and that are the asymptotic cones of smooth Cayley 4-folds. There is also a Backlund transformation (albeit a holonomic one) that can be applied globally to pseudo-holomorphic curves of genus g in G(2,8) and this suggests looking for nonholonomic Backlund transformations for other systems that can be applied globally.