Ricci flow on quasiprojective varieties

Speaker: 

Professor John Lott

Institution: 

UC Berkeley

Time: 

Tuesday, May 25, 2010 - 3:00pm

Location: 

AP&M 6402, UCSD

Singularities occur in Ricci flow because of curvature blowup. For dimensional reasons, when approaching a singularity, one expects the curvature to blow up like the inverse of the time to the singularity. If this does not happen, the singularity is said to be type II. The first example of a type II singularity, studied by Daskalopoulos-Del Pino-Hamilton-Sesum, occurs on a noncompact surface which is the result of capping off a hyperbolic cusp. The analysis in the surface case uses isothermal coordinates. It is not immediately clear whether it extends to higher dimensions. We look at the Ricci flow on finite-volume metrics that live on the complement of a divisor in a compact Khler manifold. We compute the blowup time in terms of cohomological data and give sufficient conditions for a type II singularity to emerge. This is joint work with Zhou Zhang.

Helicoid-Like Minimal Disks

Speaker: 

Mr. Jacob Bernstein

Institution: 

MIT

Time: 

Thursday, December 4, 2008 - 5:00pm

Location: 

AP&M 6402 (UCSD)

Colding and Minicozzi have shown that if an embedded minimal disk in $B_R\subset\Real^3$ has large curvature then in a smaller ball, on a scale still proportional to $R$, the disk looks roughly like a piece of a helicoid. In this talk, we will see that near points whose curvature is relatively large the description can be made more precise. That is, in a neighborhood of such a point (on a scale $s$ proportional to the inverse of the curvature of the point) the surface is bi-Lipschitz to a piece of a helicoid. Moreover, the Lipschitz constant goes to 1 as $Rs$ goes to $\infty$ . This follows from Meeks and Rosenberg's result on the uniqueness of the helicoid of which, time permitting, we will discuss a new proof. Joint work with C. Breiner.

Pages

Subscribe to RSS - Differential Geometry