The geometry of k-Ricci curvature and a Monge-Ampere equation

Speaker: 

Lei Ni

Institution: 

UC San Diego

Time: 

Tuesday, May 31, 2022 - 4:00pm

Location: 

ISEB 1200

A joint Geometry and Analysis seminar.

 

Abstract: The k-Ricci curvature interpolates between the Ricci curvature and holomorphic sectional curvature. For the positive case, a recent result asserts that the compact Kaehler manifolds with positive k-Ricci are  projective and rationally connected. This generalizes the previous results of Campana, Kollar-Miyaoka-Mori for the Fano case and the Heirer-Wong and Yang for holomorphic sectional curvature case. For the negative case, all compact Kaehler manifolds with negative k-Ricci admit a Kaehler-Einstein metric with negative scalar curvature. I shall explain how to get this result by solving a complex Monge-Ampere equation.

Polynomials, branched covers, and trees

Speaker: 

Rebecca Winarski

Institution: 

MSRI/College of the Holy Cross

Time: 

Monday, April 18, 2022 - 4:00pm to 5:00pm

Host: 

Location: 

RH 510R

Thurston proved that a post-critically finite branched cover of the plane is either equivalent to a polynomial (that is: conjugate via a mapping class) or it has a topological obstruction.  We use topological techniques – adapting tools used to study mapping class groups – to produce an algorithm that determines when a branched cover is equivalent to a polynomial, and if it is, determines which polynomial a topological branched cover is equivalent to. This is joint work with Jim Belk, Justin Lanier, and Dan Margalit.

CMC surfaces in Minkowski space

Speaker: 

Peter Smillie

Institution: 

Caltech

Time: 

Tuesday, January 14, 2020 - 4:00pm

Location: 

RH 306

In joint work with F. Bonsante and A. Seppi, we solve a
Dirichlet-type problem for entire constant mean curvature hypersurfaces in
Minkowski n+1-space, proving that such surfaces are essentially in bijection
with lower semicontinuous functions on the n-1-sphere. This builds off of
existence theorems by Treibergs and Choi-Treibergs, which themselves rely on
the foundational work of Cheng and Yau. I'll present their maximum principle
argument as well the extra tool that leads to our complete existence and
uniqueness theorem. Time permitting, I'll compare with the analogous problem
of constant Gaussian curvature and present a new result on their intrinsic
geometry.

 

Joint seminar with the Differential Geometry Seminar series.

 

Classical and quantum traces coming from SL_n(C) and U_q(sl_n)

Speaker: 

Daniel Douglas

Institution: 

USC

Time: 

Monday, January 27, 2020 - 4:00pm

Location: 

RH 340P

We discuss work-in-progress constructing a quantum trace map for
the special linear group SL_n.  This is a kind of Reshetikhin-Turaev
invariant for knots in thickened punctured surfaces, coming from an
interaction between higher Teichmüller theory and quantum groups.

Let S be a punctured surface of finite genus.  The SL_2-skein algebra of S
is a non-commutative algebra whose elements are represented by framed links
K in the thickened surface S x [0,1] subject to certain relations.  The
skein algebra is a quantization of the SL_2(C)-character variety of S, where
the deformation depends on a complex parameter q.  Bonahon and Wong
constructed an injective algebra map, called the quantum trace, from the
skein algebra of S into a simpler non-commutative algebra which can be
thought of as a quantum Teichmüller space of S. This map associates to a
link K in S x [0,1] a Laurent q-polynomial in non-commuting variables X_i,
which in the specialization q=1 recovers the classical trace polynomial
expressing the trace of monodromies of hyperbolic structures on S when
written in Thurston's shear-bend coordinates for Teichmüller space.  In the
early 2000s, Fock and Goncharov, among others, developed a higher
Teichmüller theory, which should lead to a SL_n-version of this invariant.

Constructions of Lefschetz fibrations using cyclic group actions

Speaker: 

Nur Saglam

Institution: 

Virginia Tech

Time: 

Monday, March 9, 2020 - 4:00pm

Location: 

RH 340P

We construct families of Lefschetz fibrations over S2 using
finite order cyclic group actions on the product manifolds ΣgxΣg for g>0.
We also obtain more families of Lefschetz fibrations by applying the
rational blow-down operation to these Lefschetz fibrations. This is a joint
work with Anar Akhmedov and Mohan Bhupal.

A twist on A-infinity algebras and its application on symplectic manifolds

Speaker: 

Jiawei Zhou

Institution: 

Tsinghua University

Time: 

Monday, January 13, 2020 - 4:00pm

Location: 

RH 340P

We will first review an algebra of special differential forms on sympectic manifolds, constructed by Tsai, Tseng and Yau. Then we introduce a twist on this algebra, which leads to a flatness condition. This twist is motivated by considering the connections on fiber bundles, and we can generalize it to A-infinity algebras, together with a generalized flatness condition.

Witten deformation on noncompact manifolds

Speaker: 

Xianzhe Dai

Institution: 

UC Santa Barbara

Time: 

Monday, October 28, 2019 - 4:00pm

Location: 

RH 340P

Motivated by considerations from the mirror symmetry and
Landau-Ginzburg model, we consider Witten deformation on noncompact
manifolds.

Witten deformation is a deformation of the de Rham complex introduced by
Witten in an influential paper and has had many important applications,
mostly on compact manifolds. We will discuss some recent work with my
student Junrong Yan on the spectral theory of Witten Laplacian, the
cohomology of the deformation as well as its index theory.

 

 

A joint seminar with the Differential Geometry Seminar series.

Comparing gauge theoretic invariants of homology S1 cross S3

Speaker: 

Jianfeng Lin

Institution: 

UC San Diego

Time: 

Tuesday, October 1, 2019 - 4:00pm

Location: 

RH 306

While classical gauge theoretic invariants for 4-manifolds are usually
defined in the setting that the intersection form has nontrivial positive
part, there are several invariants for a 4-manifold X with the homology S1
cross S3. The first one is the Casson-Seiberg-Witten invariant LSW(X)
defined by Mrowka-Ruberman-Saveliev; the second one is the Fruta-Ohta
invariant LFO(X). It is conjectured that these two invariants are equal to
each other (This is an analogue of Witten’s conjecture relating Donaldson and
Seiberg-Witten invariants.)

In this talk, I will recall the definition of these two invariants, give
some applications of them (including a new obstruction for metric with
positive scalar curvature), and sketch a prove of this conjecture for
finite-order mapping tori. This is based on a joint work with Danny Ruberman
and Nikolai Saveliev.

 

A joint seminar with the Differential Geometry Seminar series.

Pages

Subscribe to RSS - Geometry and Topology