Speaker: 

Yizhe Zhu

Institution: 

UCI

Time: 

Thursday, May 26, 2022 - 11:00am

Location: 

RH 306

Let $A_n$ be the sum of $d$ permutations matrices of size $n×n$, each drawn uniformly at random and independently. We prove that $\det( I_n−zA_n/\sqrt{d})$ converges when $n\to\infty$ towards a random analytic function on the unit disk. As an application, we obtain an elementary proof of the spectral gap of random regular digraphs with a sharp constant. Our results are valid both in the regime where $d$ is fixed and for $d$ slowly growing with $n$. Joint work with Simon Coste and Gaultier Lambert.