Speaker: 

Garrett Ervin

Institution: 

UCI

Time: 

Monday, May 9, 2016 - 4:00pm to 5:30pm

Host: 

Location: 

RH 440R

We complete the proof of the main theorem by showing that if X^3 is isomorphic to X, then X^{\omega} has a parity-reversing automorphism. By our previous results this implies X^2 is isomorphic to X as well. The proof generalizes to show that for any n > 1, if X^n is isomorphic to X, then X^2 is isomorphic to X. Time permitting we will discuss related results, including the existence of an A and X such that A^2X is isomorphic to X, while AX is not.