Speaker:
Andres Forero
Institution:
UCI
Time:
Monday, April 7, 2014 - 4:00pm to 5:30pm
Host:
Location:
RH 440R
We continue the exposition on self-genericity axioms for ideals on P(Z) (Club Catch, Projective Catch and Stationary Catch). We establish some relations with forcing axioms and with the existence of certain regular forcing embeddings, and also point out connections with Precipitousness. In particular we observe that if Projective Catch holds for an ideal, then that ideal is precipitous, and the converse holds for ideals that concentrate on countable sets. Finally we give an overview of the method used for proving the existence of models with Woodin cardinals coming from these axioms, using the Core Model Theory.