iFEM: an integrated finite element methods package in MATLAB

Speaker: 

Long Chen

Institution: 

UC Irvine

Time: 

Friday, May 13, 2016 - 4:00pm

Location: 

MSTB 120

iFEM is a MATLAB software package containing robust, efficient, and easy-following codes for the main building blocks of adaptive finite element methods on unstructured simplicial grids in both two and three dimensions. Besides the simplicity and readability, sparse matrixlization, an innovative programming style for MATLAB, is introduced to improve the efficiency. In this novel coding style, the sparse matrix and its operations are used extensively in the data structure and algorithms.

 

An introduction to quantum chaos

Speaker: 

Hamid Hezari

Institution: 

UC Irvine

Time: 

Friday, April 29, 2016 - 4:00pm

Location: 

MSTB 120

The purpose of this talk is to introduce the concept of quantum ergodicity of the eigenfunctions of the Laplacian and show its relation to the classical ergodicity of the geodesic flow on Riemannian manifolds. The talk is somewhat elementary and no background on Riemannian geometry or dynamical systems is necessary.

Frontier of the New Biology: Interplay between Mathematical Models and Complex Data

Speaker: 

Qing Nie

Institution: 

UC Irvine

Time: 

Friday, April 1, 2016 - 4:00pm

Location: 

MSTB 120

In 2009, US National Research Council of the National Academies published a report, called “A New Biology for the 21st Century”.  One of the major emphases in the New Biology is the integration between biology and mathematics. As explosion of biological measurements takes place in biology due to rapid technology development in recent years, the challenge lies in how to connect and make sense of the massive experimental data collected in various forms at different spatial and temporal scales. Mathematical modeling is becoming an increasingly important tool that enables better understanding of the complex data in biology.  In this talk, I will use research carried out in my group as examples to illustrate how mathematics can help discover new knowledge in biology as well as how biological models introduce new challenges and opportunities in mathematics. 

 

A non-local Maxwell condition for mechano-chemical traveling waves in cells

Speaker: 

Jun Allard

Institution: 

UC Irvine

Time: 

Friday, April 22, 2016 - 4:00pm

Location: 

MSTB 120

More and more, traveling waves are observed inside individual cells. These waves can be pulses of biochemical factors (diffusing proteins or metabolites) but also mechanical factors (such as the cell cortex). One example of mechanical traveling wave is offered by cellular blebs, pressure-driven “bubbles” on the cell surface implicated in cell division, apoptosis and cell motility. Blebs exhibit a range of behaviors including contracting in place, travel around the cell’s periphery, or repeated blebbing, making them biophysically interesting. Mechanical traveling waves are naturally modeled using “non-local” integro-PDEs, which lack the theoretical tools available for reaction-diffusion waves. This lack obfuscates simple questions such as what determines if a bleb will travel or not, and, if it travels, what determines its velocity? We present results in two parts: First, we develop a simple model of the cell surface describing the membrane, cortex, and adhesions, including the slow timescale cortical healing (treating implicitly the fast timescale of fluid motion). We find traveling and stationary blebs, which we characterize through numerical simulation. In the second part, we review the so-called Maxwell condition for reaction-diffusion systems that determines whether an excitation will travel or recover in place. We present our progress in deriving an analogue of the Maxwell condition for non-local integro-PDEs suitable for our cell surface model. This condition allows the theoretical (simulation-free) elucidation of blebbing including bleb travel. 

Quasiperiodic Operators

Speaker: 

Svetlana Jitomirskaya

Institution: 

UC Irvine

Time: 

Friday, April 8, 2016 - 4:00pm

Location: 

MSTB 120

Up until the mid 70s the kind of spectra most people had in mind in the
context of theory of Schrodinger operators were spectra occurring for
periodic potentials and for atomic and molecular Hamiltonians. Then
evidence started to build up that "exotic" spectral phenomena such as
singular continuous, Cantor, and dense point spectrum do occur in
mathematical models that are of substantial interest to theoretical
physics. One area where such exotic phenomena are particularly abundant is
quasiperiodic operators. They feature a competition between
randomness (ergodicity) and order (periodicity), which is often resolved
at a deep arithmetic level. Mathematically, the methods involved include a
mixture of ergodic theory, dynamical systems, probability, functional and
harmonic analysis and analytic number theory. The interest in those models was enhanced by strong
connections with some major discoveries in physics, such as integer
quantum Hall effect, experimental quasicrystals, and quantum chaos theory,
in all of which quasiperiodic operators provide central or important
models.

We will give a general overview concentrating on aspects where the
competition and/or collaboration between order and chaos plays an
important role

Stochastic calculus of stem cells

Speaker: 

Natalia Komarova

Institution: 

UC Irvine

Time: 

Friday, January 15, 2016 - 4:00pm

Location: 

MSTB 120

Stem cells are an important component of tissue architecture. Identifying the exact regulatory circuits that can stably maintain tissue homeostasis (that is, approximately constant size) is critical for our basic understanding of multicellular organisms. It is equally critical for figuring out how tumors circumvent this regulation, thus providing targets for treatment. Despite great strides in the understanding of the molecular components of stem-cell regulation, the overall mechanisms orchestrating tissue homeostasis are still far from being understood. Typically, tissue contains the stem cells, transit amplifying cells, and terminally differentiated cells. Each of these cell types can potentially secrete regulatory factors and/or respond to factors secreted by other types. The feedback can be positive or negative in nature. This gives rise to a bewildering array of possible mechanisms that drive tissue regulation. In this talk I describe a novel stochastic method of studying stem cell lineage regulation, which is based on population dynamics and ecological approaches. The method allows to identify possible numbers, types, and directions of control loops that are compatible with stability, keep the variance low, and possess a certain degree of robustness. I will also discuss evolutionary optimization and cancer-delaying role of stem cells.

Rational roots of sparse polynomials

Speaker: 

Daqing Wan

Institution: 

UC Irvine

Time: 

Friday, January 29, 2016 - 4:00pm

Location: 

MSTB 120

For a sparse polynomial f(x) of high degree and few terms
over a non-algebraically closed field F, the number of F-rational
roots is often very small. In the case F is the real numbers, this
is the famous Descartes's rule. In the case that F is a finite field,
the situation is much more complicated. In this lecture, we discuss
some recent results and conjectures in this direction, both
theoretical and numerical.

Pages

Subscribe to RSS - Graduate Seminar