Three Fairy Math Stories

Speaker: 

D.Burago

Institution: 

Penn State University

Time: 

Thursday, October 25, 2018 - 2:00pm to 3:00pm

Location: 

RH 306

 Three different math stories in one lecture. Only definitions, motivations, results, some ideas behind proofs, open questions. 

1. One of the greatest achievements in Dynamics in the XX century is the KAM Theory. It says that a small perturbation of a non-degenerate completely integrable system still has an overwhelming measure of invariant tori with quasi-periodic dynamics. What happens outside KAM tori remains a great mystery. The main quantitate invariants so far are entropies.  It is easy, by modern standards, to show that topological entropy can be positive. It lives, however, on a zero measure set. We are now able to show that metric entropy can become positive too, under arbitrarily small C^{infty} perturbations, answering an old-standing problem of Kolmogorov. Furthermore, a slightly modified construction resolves another long–standing problem of the existence of entropy non-expansive systems. In these modified examples  positive metric entropy is generated in arbitrarily small tubular neighborhoods of one trajectory. Joint with S. Ivanov and Dong Chen.

2. A survival guide for a feeble fish and homogenization of the G-Equation. How fish can get from A to B in turbulent waters which maybe much fasted than the locomotive speed of the fish provided that there is no large-scale drift of the water in the ocean? This is related to the G-Equation and has applications to its homogenization. The G-equation is believed to govern many combustion processes, say wood fires or combustion in combustion engines (generally, in pre-mixed media with “turbulence".  Based on a joint work with S. Ivanov and A. Novikov.

3. Just 20 years ago the topic of my talk at the ICM was a solution of a problem which goes back to Boltzmann and has been formulated mathematically by Ya. Sinai. The conjecture of Boltzmann-Sinai states that the number of collisions in a system of $n$ identical balls colliding elastically in empty space is uniformly bounded for all initial positions and velocities of the balls. The answer is affirmative and the proven upper bound is exponential in $n$. The question is how many collisions can actually occur. On the line, one sees that  there can be $n(n-1)/2$ collisions, and this is the maximum. Since the line embeds in any Euclidean space, the same example works in all dimensions. The only non-trivial (and counter-intuitive) example I am aware of is an observation by Thurston and Sandri who gave an example of 4 collisions between 3 balls in $R^2$. Recently, Sergei Ivanov and me proved that there are examples with exponentially many collisions between  $n$ identical balls in $R^3$, even though the exponents in the lower and upper bounds do not perfectly match. Many open questions left.

Averaging one-point hyperbolic-type metrics

Speaker: 

Wes Whiting

Institution: 

CSUF

Time: 

Tuesday, April 24, 2018 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

Hyperbolic-type metrics extend the idea of negative curvature to metric spaces, and several well-behaved hyperbolic-type metrics are known on 1-punctured Euclidean space. However, they lose their hyperbolicity on spaces with non-singleton boundary. In this talk, I will discuss the obstructions to hyperbolicity on more general boundaries, and give a recent result which allows hyperbolicity over n-punctured Euclidean space.

Josephson junction, Arnold tongues, and their adjacency points

Speaker: 

Victor Kleptsyn

Institution: 

CNRS, Rennes University

Time: 

Tuesday, March 13, 2018 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

The study of the equation on the 2-torus given by  
x’= sin x + a + b sin t
has been motivated by its relation to the Josephson junction in physics, as well as by purely mathematical reasons. For any values of the parameters a and b, one can consider the time-2\pi (period) map from the x-circle to itself, and study its properties, in particular, its rotation number.

Study of the Arnold tongues corresponding to this family, reveals a miracle: sometimes, their left and right boundaries intersect at a hourglass-type so-called adjacency point. Moreover, the a-coordinates of all these points turn out to be integers. My talk will be devoted to the geometry behind all of this, summarizing the works of many authors: Ilyashenko, Guckenheimer, Buchstaber, Karpov, Tertychnyi, Glutsyuk, Klimenko, Schurov, Filimonov, Romaskevich, Ryzhov, and myself.
 

Groups acting on the circle

Speaker: 

Victor Kleptsyn

Institution: 

CNRS, Rennes University

Time: 

Tuesday, March 6, 2018 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

The talk will be devoted to the study of finitely generated groups acting on the circle. We will start with joint results with A. Navas and B. Deroin: if such an action by analytic diffeomorphisms admits a Cantor minimal set, then this set is of Lebesgue measure zero, and if such an action by free group of analytic diffeomorphisms is minimal, then it is also Lebesgue-ergodic.

If the time permits, we will discuss the new results and state of art of an ongoing joint project with B. Deroin, A. Navas, D. Filimonov, M. Triestino, D. Malicet, S. Alvarez, P. G. Barrientos and C. Meniño, devoted to the further study of such actions, and the different kingdoms of locally discrete and locally non-discrete actions.

Some combinatorial properties of simple Toeplitz subshifts

Speaker: 

Daniel Sell

Institution: 

Friedrich-Schiller-Universität Jena

Time: 

Tuesday, November 7, 2017 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

Toeplitz sequences are constructed from periodic sequences with undetermined positions by successively filling these positions with the letters of other periodic sequences. In this talk, the class of so called simple Toeplitz sequences will be considered. We will describe combinatorial properties, such as the word complexity, of the subshifts that are associated with them. The relation between combinatorial properties of the coding sequences and the Boshernitzan condition will be discussed as well.

Boundary amenability of groups via ultrapowers

Speaker: 

Isaac Goldbring

Institution: 

UC Irvine

Time: 

Tuesday, October 24, 2017 - 1:00pm to 2:00pm

Location: 

RH 440R

A (countable discrete) group $\Gamma$ acting on a compact space $X$ is said to act \emph{amenably} if there is a continuous net $(\mu_n^x)$ of probability measures indexed by the points of $X$ that are almost invariant under the action of $\Gamma$. For example, $\Gamma$ is amenable if and only if it acts amenably on a one-point space. The protoypical example of a boundary amenable non-amenable group is a non-abelian free group. More generally, if acts properly, isometrically, and transitively on a tree, then $\Gamma$ is boundary amenable. In this talk, I will present a construction of the Stone-Cech compactification of a locally compact space using C*-algebra ultrapowers that allows one to give a slick proof of the aforementioned result. This construction is motivated by the open question as to whether or not Thompson’s group is boundary amenable and I will also discuss the optimistic thought that this construction could be used to settle that problem.

On self-similar sets with overlaps and inverse theorems for entropy III

Speaker: 

Yuki Takahashi

Institution: 

UC Irvine

Time: 

Tuesday, May 2, 2017 - 1:00pm to 2:00pm

Location: 

RH 440R

We discuss an inverse theorem on the structure of pairs of discrete probability measures which has small amount of growth under convolution, and apply this result to self-similar sets with overlaps to show that if the dimension is less than the generic bound, then there are superexponentially close cylinders at all small enough scales. The results are by M.Hochman. 

Interacting Polya urns (on joint works with Christian Hirsch and Mark Holmes)

Speaker: 

Victor Kleptsyn

Institution: 

Universite Rennes 1, CNRS

Time: 

Tuesday, April 11, 2017 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

In the classical Polya’s urn process, there are balls of different colors in the urn, and one step of the process consists of taking out a random ball and it putting back together with one more ball of the same color. ("Ask a friend whether he’s using is A or B, and buy the same".)

It also can be modified by saying that the reinforcement probability is proportional not to the number of balls of a given color, but to its power $\alpha$, and the asymptotic behaviour for $\alpha=1$, $\alpha>1$ and for $\alpha<1$ are quite different.

The talk will be devoted to the model of interacting urns : at each moment, there is a competition for reinforcement between randomly chosen subset of colours; for a real-life analogue, one can consider companies competing on different markets (one company produces toys and computers, another sells computers and cars, etc.).

We will describe possible types of the limit behaviour of such model for different values of $\alpha$; it turns out that what happens for $\alpha>>1$ is quite different from $\alpha=1$, and both are quite interesting (this is a joint work with Christian Hirsch and Mark Holmes).

Domino tilings and determinantal formulas

Speaker: 

Victor Kleptsyn

Institution: 

Universite Rennes 1, CNRS

Time: 

Tuesday, April 4, 2017 - 10:00am to 11:00am

Host: 

Location: 

NS2 1201

Given a planar domain on the rectangular grid, how many ways are there of tiling it by dominos (that is, by 1x2 rectangles)? And how does a generic tiling of a given domain look like?

It turns out that these questions are related to the determinants-based formulas, and that likewise formulas appear in many similar situations. In this direction, one obtains the famous arctic circle theorem, describing the behaviour of a generic domino tiling of an aztec diamond, and a statement for the lozenges tilings on the hexagonal lattice, giving the shape of a corner of a cubic crystal.

Pages

Subscribe to RSS - Dynamical Systems