Index Characterization for Free Boundary Minimal Surfaces

Speaker: 

Hung Tran

Institution: 

UC Irvine

Time: 

Tuesday, October 25, 2016 - 4:00pm

Location: 

RH 306

A FBMS in the unit Euclidean ball is a critical point of the area functional among all surfaces with boundaries in the unit sphere, the boundary of the ball. The Morse index gives the number of distinct admissible deformations which decrease the area to second order. In this talk, we explain how to compute the index from data of two simpler problems. The first one is the corresponding problem with fixed boundary condition; and the second is associated with the Dirichlet-to-Neumann map for Jacobi fields. We also discuss applications to a conjecture about FBMS with index 4.

Compactness, finiteness properties of Lagrangian self-shrinkers in R^4 and piecewise mean curvature flow

Speaker: 

John Ma

Institution: 

University of British Columbia

Time: 

Tuesday, November 8, 2016 - 4:00pm

Host: 

Location: 

RH 306

Abstract:
In this talk, we discuss a compactness result on the space of compact Lagrangian self-shrinkers in R^4. When the area is bounded above uniformly, we prove that the entropy for the Lagrangian self-shrinking tori can only take finitely many values; this is done by deriving a Lojasiewicz-Simon type gradient inequality for the branched conformal self-shrinking tori. Using the finiteness of entropy values, we construct a piecewise Lagrangian mean curvature flow for Lagrangian immersed tori in R^4, along which the Lagrangian condition is preserved, area is decreasing, and the type I singularities that are compact with a fixed area upper bound can be perturbed away in finite steps. This is a Lagrangian version of the construction for embedded surfaces in R^3 by Colding and Minicozzi.This is a joint work with Jingyi Chen.

On Weyl's embedding problem in Riemannian manifolds

Speaker: 

Siyuan Lu

Institution: 

McGill University

Time: 

Tuesday, October 18, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

We consider a priori estimates of Weyl’s embedding problem of (S^2,g) in general 3-dimensional Riemannian manifold (N^3,\bar g). We establish the mean curvature estimate under natural geometric assumption. Together with a recent work by Li-Wang, we obtain an isometric embedding of (S2,g) in Riemannian manifold. In addition, we reprove Weyl’s isometric embedding theorem in space form under the condition that g \in C^2 with D^2g Dini continuous. 

Increased Regularity for Hamiltonian Stationary submanifolds

Speaker: 

Micah Warren

Institution: 

University of Oregon

Time: 

Tuesday, October 11, 2016 - 4:00pm

Host: 

Location: 

RH306

A Hamiltonian Stationary submanifold of complex space is a Lagrangian manifold whose volume is stationary under Hamiltonian variations.  We consider gradient graphs $(x,Du(x))$ for a function $u$.    For a smooth $u$, the Euler-Lagrange equation can be expressed as a fourth order nonlinear equation in $u$ that can be locally linearized (using a change of tangent plane) to the bi-Laplace.  The volume can be defined for lower regularity, however, and computing the Euler-Lagrange equation with less assumed regularity gives a "double divergence" equation of second order quantities.   We show several results.  First, there is a $c_n$ so that if the Hessian $D^2u$ is $c_n$-close to a continuous matrix-valued function, then the potential must be smooth.  Previously, Schoen and Wolfson showed that when the potential was $C^{2,\alpha}$, then the potential $u$ must be smooth.    We are also able to show full regularity when the Hessian is bounded within certain ranges.   This allows us to rule out conical solutions with mild singularities.

This is joint work with Jingyi Chen.

Quasi-local mass and its applications

Speaker: 

Po-Ning Chen

Institution: 

UC Riverside

Time: 

Tuesday, October 4, 2016 - 4:00pm

Location: 

RH 306

In this talk, we will discuss recent progress on quasi-local mass in
general relativity focusing on the Wang-Yau quasi-local mass and
discuss how to define other quantities such as angular momentum based
on the ideas and techniques developed in the quasi-local mass. We
will also discuss properties and applications of these newly defined
quantities.

Weak solutions of complex Hessian equations on compact Hermitian manifolds

Speaker: 

Slawomir Kolodziej

Institution: 

Jagiellonian University

Time: 

Monday, August 22, 2016 - 3:00pm to 4:00pm

Host: 

Location: 

RH 306

We prove the existence of weak solutions of complex m- Hessian equations on compact Hermitian manifolds for the nonnegative  right hand side belonging to $L^p, p>n/m$ ($n$ is the dimension of the manifold). For smooth, positive data the equation has been recently solved by Sz\'ekelyhidi and Zhang. We also give a stability result for such solutions.

Ricci curvature and martingales

Speaker: 

Robert Haslhofer

Institution: 

University of Toronto

Time: 

Tuesday, February 21, 2017 - 4:00pm

Host: 

Location: 

RH 306

We generalize the classical Bochner formula for the heat flow on a manifold M to martingales on path space PM, and develop a formalism to compute evolution equations for martingales on path space. We see that our Bochner formula on PM is related to two sided bounds on Ricci curvature in much the same manner as the classical Bochner formula on M is related to lower bounds on Ricci curvature. This establishes a new link between geometry and stochastic analysis, and provides a crucial new tool for the study of Einstein metrics and Ricci flow in the smooth and non-smooth setting. Joint work with Aaron Naber.

Fully nonlinear elliptic equations with gradient terms on Hermitian manifolds

Speaker: 

Bo Guan

Institution: 

Ohio State University and Xiamen University

Time: 

Tuesday, May 17, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

We consider fully nonlinear elliptic equations on complex manifolds which depend on the gradient in some nontrivial ways. Some of these equations arise from interesting problems in complex geometry, such as a conjecture by Gauduchon which is a natural generalization of Calabi conjecture to the Hermitian setting, and finding balanced metrics on Hermitian manifolds. We shall discuss difficulties in solving such equations and present recent results in our attempt to overcome these difficulties.  Our goal is to establish some general existence results which we hope will find useful applications in complex geometry in the near future. We'll explain how our results provide a proof to the Gauduchon conjecture building on previous work of Tossati-Weinkove and others. The talk is based on joint work with Xiaolan Nie, Chunhui Qiu and Rirong Ruan. 

Distinguished metrics on toric manifolds

Speaker: 

Thomas Murphy

Institution: 

Cal State Fullerton

Time: 

Tuesday, May 24, 2016 - 4:00pm to 5:00pm

Location: 

RH 306

I will discuss some problems arising in the study of toric Kaehler metrics, mostly focusing on studying the invariant spectrum of the Laplacian, explicit constructions of distinguished metrics (Einstein, Ricci soliton, and quasi-Einstein metrics) and connections between these topics. Time permitting, I will also outline numerical approaches to these problems.

Pages

Subscribe to RSS - Differential Geometry