Speaker:
Speaker Link:
Institution:
Time:
Location:
The stochastic block model has been one of the most fruitful research topics in community detection and clustering. Recently, community detection on hypergraphs has become an important topic in higher-order network analysis. We consider the detection problem in a sparse random tensor model called the hypergraph stochastic block model (HSBM). We prove that a spectral method based on the non-backtracking operator for hypergraphs works with high probability down to the generalized Kesten-Stigum detection threshold conjectured by Angelini et al (2015). We characterize the spectrum of the non-backtracking operator for sparse random hypergraphs and provide an efficient dimension reduction procedure using the Ihara-Bass formula for hypergraphs. As a result, the community detection problem can be reduced to an eigenvector problem of a non-normal matrix constructed from the adjacency matrix and the degree matrix of the hypergraph. Based on joint work with Ludovic Stephan (EPFL). https://arxiv.org/abs/2203.07346