Speaker: 

Anna Ma

Institution: 

UCI

Time: 

Wednesday, October 6, 2021 - 2:00pm to 3:00pm

Location: 

510R

Signed measurements of the form $y_i = sign(\langle a_i, x \rangle)$ for $i \in [M]$ are ubiquitous in large-scale machine learning problems where the overarching task is to recover the unknown, unit norm signal $x \in \mathbb{R}^d$. Oftentimes, measurements can be queried adaptively, for example based on a current approximation of $x$, leading to only a subset of the $M$ measurements being needed. Geometrically, these measurements emit a spherical hyperplane tessellation in $\mathbb{R}^{d}$ where one of the cells in the tessellation contains the unknown vector $x$. Motivated by this problem, in this talk we will present a geometric property related to spherical hyperplane tessellations in $\mathbb{R}^{d}$. Under the assumption that $a_i$ are Gaussian random vectors, we will show that with high probability there exists a subset of the hyperplanes whose cardinality is on the order of $d\log(d)\log(M)$ such that the radius of the cell containing $x$ induced by these hyperplanes is bounded above by, up to constants, $d\log(d)\log(M)/M$. The work presented is joint work with Rayan Saab and Eric Lybrand.