Speaker: 

Ken Ascher

Institution: 

Princeton

Time: 

Tuesday, January 21, 2020 - 3:00pm to 3:50pm

Location: 

306 RH

Algebraic geometry is concerned with algebraic varieties, which can be understood as solution sets of polynomial equations. At the heart of research is the classification of algebraic varieties, and a geometric solution is provided in the form of a moduli space. Roughly speaking, a moduli space is itself an algebro-geometric object whose points represent equivalence classes of algebraic varieties of a fixed type. This talk begins with the moduli space of curves, which parametrizes equivalence classes of complex algebraic curves (i.e. Riemann surfaces) of a fixed genus. This moduli space, like most moduli spaces appearing in algebraic geometry, is not a compact space. A celebrated result of Deligne and Mumford provides a geometric way to compactify this space. The goal of this talk is to discuss recent progress towards compactifying moduli spaces of higher dimensional complex algebraic varieties (e.g. complex algebraic surfaces).