Speaker: 

Yi Zhang

Institution: 

Mathematical Institute of the University of Bonn

Time: 

Tuesday, January 16, 2018 - 3:00pm

Host: 

Location: 

RH306

Given a planar infinity harmonic function u, for each
$\alpha>0$ we show a quantitative $W^{1,\,2}_{\loc}$-estimate of
$|Du|^{\alpha}$, which is sharp when $\alpha\to 0$.  As a consequence we
obtain an $L^p$-Liouville property for infinity harmonic functions in
the whole plane