Speaker: 

Greg Lawler

Institution: 

University of Chicago

Time: 

Friday, February 24, 2017 - 2:00am to 3:00am

Host: 

Location: 

NS2 1201

For a smooth curve, the natural paraemtrization

is parametrization by arc length.  What is the analogue

for a random curve of fractal dimension d?  Typically,

such curves have Hausdorff dmeasure 0.  It turns out

that a different quantity, Minkowski content, is the

right thing.   

 

I will discuss results of this type for the Schramm-Loewner

evolution --- both how to prove the content is well-defined

(work with M. Rezaei) and how it relates to the scaling

limit of the loop-erased random walk (work with F. Viklund

and C. Benes).