Speaker: 

Greg Lawler

Institution: 

University of Chicago

Time: 

Thursday, February 23, 2017 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

The self-avoiding walk (SAW) is a model for polymers that assigns equal probability to all paths that do not return to places they have already been. The lattice version of this problem, while elementary to define, has proved to be notoriously difficult and is still open. It is initially more challenging to construct a continuous limit of the lattice model which is a random fractal. However, in two dimensions this has been done and the continuous model (Schram-Loewner evolution) can be analyzed rigorously and  used to understand the nonrigorous predictions about SAWs.  I will survey some results in this area and then discuss some recent work on this ``continuous SAW''.