Speaker: 

Stephen DeSalvo

Institution: 

UCLA

Time: 

Tuesday, February 24, 2015 - 11:00am to 12:00pm

Host: 

Location: 

R 306

Abstract: Limit shapes are an increasingly popular way to understand
the large—scale characteristics of a random ensemble.  The limit shape
of unrestricted integer partitions has been studied by many authors
primarily under the uniform measure and Plancherel measure.  In
addition, asymptotic properties of integer partitions subject to
restrictions has also been studied, but mostly with respect to
\emph{independent} conditions of the form ``parts of size $i$ can
occur at most $a_i$ times.”  While there has been some progress on
asymptotic properties of integer partitions under other types of
restrictions, the techniques are mostly ad hoc.  In this talk, we will
present an approach to finding limit shapes of restricted integer
partitions which extends the types of restrictions currently
available, using a class of asymptotically stable bijections.  This is
joint work with Igor Pak.