Speaker:
Institution:
Time:
Host:
Location:
Motivated by the pluriclosed flow of Streets and Tian, we establish
Evans-Krylov type estimates for parabolic "twisted" Monge-Ampere
equations in both the real and complex setting. In particular, a bound
on the second derivatives on solutions to these equations yields bounds
on Holder norms of the second derivatives. These equations are
parabolic but neither not convex nor concave, so the celebrated proof of
Evans-Krylov does not apply. In the real case, the method exploits a
partial Legendre transform to form second derivative quantities which
are subsolutions. Despite the lack of a bona fide complex Legendre
transform, we show the result holds in the complex case as well, by
formally aping the calculation. This is joint work with Jeff Streets.