Speaker:
Zhongwei Shen
Institution:
University of Kentucky
Time:
Tuesday, March 12, 2013 - 3:00pm to 4:00pm
Host:
Location:
306RH
In the talk I will describe my recent work, joint with Carlos Kenig and
Fanghua Lin, on homogenization of the Green and Neumann functions for a family of second order elliptic systems with highly oscillatory periodic coefficients. We study the asymptotic behavior of the first derivatives of the Green and Neumann functions, using Dirichlet and Neumann correctors. As a result, we obtain asymptotic expansions of Poisson kernels and the Dirichlet-to-Neumann maps as well as optimal convergence rates in L^p and W^{1,p} for solutions with Dirichlet or Neumann boundary conditions.