Speaker:
Institution:
Time:
Location:
Serre proved in 1972 that the image of the adelic Galois representation
associated to an elliptic curve E without complex multiplication has open
image; moreover, he also proved that for an elliptic curve over Q the
index of the image is always divisible by 2 (and in particular never
surjective). More recently, Greicius in his thesis gave criteria for
surjectivity and gave an explicit example of an elliptic curve E over a
number field K with surjective adelic representation. Soon after, Zywina,
building on earlier work of Duke, Jones, and others, proved that the
adelic image `random' elliptic curve is maximal.
In this talk I will explain recent joint work with David Zywina in which
we generalize these theorems and prove that a random abelian variety in a
family with big monodromy has maximal image of Galois. I'll explain what
big monodromy and maximal mean an explain the analytic and geometric
techniques used in previous work and the new geometric ideas -- in
particular, Nori's method of semistable approximation-- needed to
generalized to higher dimension.