Speaker: 

Professor Carl Pomerance

Institution: 

Dartmouth College

Time: 

Thursday, February 9, 2012 - 3:00pm

Location: 

RH 440R

For an integer n > 2, the unit group modulo n has an even number
of elements, with half of them having representatives in (0,n/2)
and the other half having representatives in (n/2,n). It is
"balanced". Say a subgroup H of this unit group is "balanced"
if each coset of H is evenly split between the bottom half and
the top half. Suppose g>1 is a fixed integer. We are concerned with
the distribution of numbers n coprime to g for which the
cyclic subgroup in the unit group mod n is balanced.
This has an application to the statistical study of the rank
of the Legendre curve over function fields. (Joint work with
Douglas Ulmer.)