Speaker:
Rajinder Mavi
Institution:
UCI
Time:
Thursday, November 17, 2011 - 2:00pm
Location:
RH 306
Discrete quasiperiodic Schrodinger operators have been researched extensively over the past thirty years to produce a rather complete spectral analysis when the potential is defined by analytic functions. However, the nature of the spectral measures for less than $C^\infty$ regularity of the potential is largely unknown. We demonstrate that, with only minimal assumptions on the regularity of the potential, in the regime of positive Lyapunov exponents, the spectral measures are always of
Hausdorff dimension zero.