Speaker:
Dr. Lu Wang
Institution:
MSRI and Johns-Hopkins
Time:
Tuesday, December 6, 2011 - 4:00pm
Location:
RH 306
Recently, using the desingularization technique, a new family of complete properly embedded self-shrinkers asymptotic to cones in three dimensional Euclidean space has been constructed by Kapouleas-Kleene-Moeller and independently by Nguyen.
In this talk, we present the uniqueness of self-shrinking ends asymptotic to any given cone in general Euclidean space. The feature of our uniqueness result is that we do not require the control on the boundaries of self-shrinking ends or the rate of convergence to cones at infinity. As applications, we show that, there do not exist complete properly embedded self-shrinkers other than hyperplanes having ends asymptotic to rotationally symmetric cones.