Speaker:
Institution:
Time:
Location:
This is joint work with Louis-Pierre Arguin, Michael Damron and Dan Stein (arXiv:0911.4201). It is an open problem to determine the number of infinite-volume ground states in the Edwards-Anderson (nearest neighbor) spin glass modelon Z^d for d \geq 2 (with, say, mean zero Gaussian couplings). This is a limiting case of the problem of determining the number of extremal Gibbs states at low temperature. In both cases, there are competing conjectures for d \geq 3, but no complete results even for d=2. I report on new results which go some way toward proving that (with zero external field, so that ground states come in pairs, related by a global spin flip) there is only a single ground state pair (GSP). Our result is weaker in two ways: First, it applies not to the full plane Z^2, but to a half-plane. Second, rather than showing that a.s. (with respect to the quenched random coupling realization J) there is a single GSP, we show that there is a natural joint distribution on J and GSP's such that for a.e. J, the conditional distribution on GSP's given J is supported on only a single GSP. The methods used are a combination of percolation-like geometric arguments with translation invariance (in one of the two coordinate directions of the half-plane) and uses as a main tool the "excitation metastate" which is a probability measure on GSP's and on how they change as one or more individual couplings vary.