Speaker:
Jim Kelliher
Institution:
University of California - Riverside
Time:
Thursday, November 19, 2009 - 3:00pm
Location:
RH 440R
We develop the concept of an infinite-energy statistical solution to the Navier-Stokes and Euler equations in the whole plane. We use a velocity formulation with enough generality to encompass initial velocities having bounded vorticity, which includes the important special case of vortex patch initial data. Our approach is to use well-studied properties of statistical solutions in a ball of radius R to construct, in the limit as R goes to infinity, an infinite-energy solution to the Navier-Stokes equations. We then construct an infinite-energy statistical solution to the Euler equations by making a vanishing viscosity argument.