Speaker: 

Professor Yuri Suhov

Institution: 

Cambridge University

Time: 

Tuesday, April 8, 2008 - 1:00pm

Location: 

MSTB 254

This talk focuses on asymptotic properties
of geometric branching processes on hyperbolic spaces
and manifolds. (In certain aspects, processes on hyperbolic spaces are
simpler than on Euclidean spaces.)
The first paper in this direction was
by Lalley and Sellke (1997) and dealt with a homogenous branching diffusion on a hyperbolic (Lobachevsky) plane).
Afterwards, Karpelevich, Pechersky and Suhov (1998) extended
it to general homogeneous branching processes on
hyperbolic spaces of any dimension. Later on, kelbert and Suhov
(2006, 2007) proceeded to include non-homogeneous branching
processes. One of the main questions here is to calculate
the Hausdorff dimension of the limiting set on the absolute.
I will not assume any preliminary knowledge of hyperbolic
geometry.