Speaker:
Time:
Location:
I will discuss a few recent studies on how organisms propel themselves through water, focusing on the appendages that allow them to do so efficiently. I will begin with fish fins, which have evolved over millions of years in a convergent fashion, leading to a highly-intricate fin-ray structure that is found in half of all fish species. This fin ray structure gives the fin flexibility plus one degree of freedom for shape control. I will present a linear elasticity model of the fin ray, based on experiments performed in the Lauder Lab in Harvard's Biology department.
In conjunction with this work, I will present numerical simulations of a fully-coupled fin-fluid model, based on a new method for computing the dynamics of a flexible bodies and vortex sheets in 2D flows. The simulations are applied to the most common mode of fish swimming, based on tail fin oscillations. In the passive case, an optimal flexibility for thrust is identified, and we consider also the optimal distribution of flexibility, with reference to recent measurements of tapering of insect wings and fish fins. We also briefly present work on fundamental
instabilities of a flexible body aligned with a flow (the "flapping flag" problem).
I will then discuss work on the role of bumps on the leading edge of humpback whale flippers, in collaboration with Ernst van Nierop and Michael Brenner at Harvard. Bumps have been shown in wind tunnels to increase the angle of attack at which flippers lose lift dramatically, or "stall." This stall-delay is thought to enable greater agility. In this study we propose an aerodynamic mechanism which explains why the lift curve flattens out as the amplitude of the bumps is increased, leading to potentially desirable control properties.
Finally, I will briefly describe results on a recent problem in self-assembly: the formation of 3D structures from flat elastic sheets with embedded magnets. The ultimate utility of this method for assembly depends on whether it leads to incorrect, metastable structures. We examine how the number of metastable states depends on the sheet shape and thickness. Using simulations and the theory of dislocations in elastic media we identify out-of-plane buckling as the key event leading to metastability. The number of metastable states increases rapidly with increasing variability in the boundary curvature and decreasing sheet thickness.