Speaker:
Professor Peter March
Institution:
Ohio State University
Time:
Tuesday, April 4, 2006 - 11:00am
Location:
MSTB 254
There is a rich physical literature on polymer dynamics which presents a number of fascinating challenges for mathematicians. We model thermal fluctuation of a polymer in solvent as a curve or loop obeying a stochastic partial differential equation (SPDE). The simplest instance is the so-called Rouse model which is an infinite dimensional Ornstein-Uhlenbeck process satisfying a linear SPDE. We'll review the Rouse model and then describe recent results (a) of Seung Lee on an SPDE for the Rouse model in a half-space with reflecting boundary conditions; and (b) of Scott McKinley on an SPDE model of the hydrodynamic interaction.