Wave propagation and imaging in noisy environments.

Speaker: 

Professor Knut Solna

Institution: 

UCI

Time: 

Tuesday, October 27, 2009 - 11:00am

Location: 

RH 306

We consider modeling of wave propagation phenomena
in some noisy and cluttered environments. We then show how
the noisy environment may have an effect when trying
to use wave reflections for imaging purposes. In particular
we discuss the so called parabolic approximation regime
corresponding to long range propagation.

The boundary Haranck principle of the independent sum of Brownian motion and symmetric stable process.

Speaker: 

Professor Panki Kim

Institution: 

Seoul National University

Time: 

Tuesday, November 24, 2009 - 11:00am

Location: 

RH 306

In this talk, we consider the family of pseudo differential operators $\{\Delta+ b \Delta^{\alpha/2}; b\in [0, 1]\}$ that evolves continuously from $\Delta$ to $\Delta + \Delta^{\alpha/2}$. We establish a uniform boundary Harnack principle with explicit boundary decay rate for nonnegative functions which are harmonic with respect to $\Delta +b = \Delta^{\alpha/2}$ (or equivalently, the sum of a Brownian motion and an independent symmetric $\alpha$-stable process with constant multiple $b^{1/\alpha}$) in $C^{1, 1}$ open sets.

On adding a list of numbers (and other one-dependent determinantal processes)

Speaker: 

Professor Jason Fulman

Institution: 

USC

Time: 

Tuesday, October 20, 2009 - 11:00am

Location: 

RH 306

Adding a column of numbers produces `carries' along the way. We show that random digits produce a pattern of carries with a neat probabilistic description: the carries form a one-dependent determinantal point process. This makes it easy to answer natural questions: How many carries are typical? Where are they located? (Many further examples, from combinatorics, algebra and group theory, have essentially the same neat formulae.) The examples give a gentle introduction to the emerging fields of one-dependent and determinantal point processes. This work is joint with Alexei Borodin and Persi Diaconis.

Pages

Subscribe to RSS - Combinatorics and Probability