Hardy inequalities for simply connected planar domains

Speaker: 

Alexander Sobolev

Institution: 

University of Birmingham, UK

Time: 

Thursday, April 6, 2006 - 2:00pm

Location: 

MSTB 254

In 1986 A. Ancona showed, using the Koebe one-quarter Theorem, that for a simply-connected planar domain the constant in the Hardy inequality with the distance to the boundary is greater than or equal to 1/16. We consider classes of domains for which there is a stronger version of the Koebe Theorem. This implies better estimates for the constant appearing in the Hardy inequality.

The spectrum of the weakly perturbed Landau Hamiltonian

Speaker: 

Alexander Pushnitski

Institution: 

King's College, London, visiting Caltech

Time: 

Thursday, April 20, 2006 - 2:00pm

Location: 

MSTB 254

The subject of the talk is the spectrum of a two-dimensional
Schrodinger operator with constant magnetic field and a compactly supported electric potential. The eigenvalues of such an operator form clusters around the Landau levels.
The eigenvalues in these clusters accumulate towards the Landau levels super-exponentially fast. It appears that these eigenvalues can be related to a certain sequence of orthogonal polynomials in the complex domain. This allows one to accurately describe the rate of accumulation of eigenvalues towards the Landau levels. This description involves the logarithmic capacity of the support of the electric potential. The talk is based on a joint work with Nikolai FIlonov from St.Petersburg.

The Four-Denominator lemma and its application to the random Schrodinger evolution

Speaker: 

Professor Lazlo Erdoes

Institution: 

University Munich, visiting Harvard

Time: 

Thursday, January 26, 2006 - 2:00pm

Location: 

MSTB 254

We study the extended states regime of the discrete Anderson model. The perturbative approach requires precise estimates on the free propagator,
$(a- e(p)+i\eta)^{-1}$,$\eta>0$, $\alpha\in \bR$,
where $e(p)= \sum_{i=1}^3 [1- \cos (p_i)]$, $p=(p_1, p_2, p_3)$,
is the dispersion relation of the three dimensional cubic lattice. The level surfaces of the function $e(p)$ have vanishing curvature. We will present new bounds on the Fourier transform of such surfaces. This will yield estimates on the probability that
a quantum particle travelling in a weak random environment
recollides with obstacles visited earlier.

Inverse Scattering Theory for Jacobi Operators with Quasi-Periodic Background

Speaker: 

gerald Teschl

Institution: 

University of Vienna

Time: 

Thursday, August 25, 2005 - 2:00pm

Location: 

MSTB 254

I will consider inverse scattering theory for Jacobi operators which
are
short range perturbation of a quasi-periodic finite-gap background
operator.
In particular I want to investigate the algebraic constraints on the
scattering
data in this situation.

The Resonance Counting Function for Schrodinger Operators

Speaker: 

Professor Peter Hislop

Institution: 

University of Kentucky

Time: 

Tuesday, August 16, 2005 - 2:00pm

Location: 

MSTB 254

I will discuss the resonance counting function for Schrodinger operators with compactly-supported, $L^\infty$, real-, or complex-valued potentials, in odd dimensions $d \geq 3$. In joint work with T. Christiansen, we prove that the set of such potentials for which the resonance counting function has maximal order of growth $d$ is generic.

Dissipative transport and Kubo's formula in Aperiodic Solids

Speaker: 

Jean Bellissard

Institution: 

Georgia Institute of Technology and Institut Universitaire de France

Time: 

Wednesday, May 4, 2005 - 4:00pm

Location: 

MSTB 254

Dissipative transport in solids can be described by a Markov
semigroup of completely positive operators on the observable algebra of the charge carriers creation and annihilation operators. A model of generators of such semigroups, called the quantum jump model, will be presented. The linear response theory will be shown to provide the expression of transport coefficients through a Green-Kubo formula. This formula will be justified rigorously through the spectral property of the
generator of the quantum jump model in various situations. The case of aperiodic solids, such as strongly disordered systems will be emphasized, in view of its relevance in the theory of the Quantum Hall effect.

Pages

Subscribe to RSS - Mathematical Physics