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1. Let f be a positive continuous function on [0, 1]. Prove that

I}ggo Nl oo, 1y = 11 f | zo< (0, 17)-



2. Suppose that f : R — R is absolutely continuous and g : [a,b] — R is
absolutely continuous and strictly monotonic. Prove that fog: [a,b] — R
is absolutely continuous.



3. Suppose that f € L>(0,1) is such that
| @@z =0
(0,1)

for every absolutely continuous function g on [0, 1] for which g(0) = ¢g(1) = 0.
Prove that f equals to a constant almost everywhere.



4. Fix f € LS/5(R) and g € L°(R). Let h be the function on R defined by

) = [ " e —y)gly) dy.

Prove that h is continuous.



5. Fix 1 <p < oo and f € LP(R). Show that
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6. Fix f € L'(R). Show that the series

converges absolutely for almost every z € R.



