Print Your Name: —	last	first
Print Your I.D. Numbe	er:	

Real Analysis Qualifying Examination, Tuesday, January 10, 2023 $12:00~\mathrm{PM}-2:30~\mathrm{PM},~\mathrm{Room~RH~306}$

Table of your scores

 Problem 1 — / 10

 Problem 2 — / 10

 Problem 3 — / 10

 Problem 4 — / 10

 Problem 5 — / 10

 Problem 6 — / 10

 Total — / 60

1. Consider a measure space (X, \mathcal{A}, μ) and a sequence of measurable sets $E_n, n \in \mathbb{N}$ such that

$$\sum_{n=1}^{\infty} \mu(E_n) < \infty.$$

Show that almost every $x \in X$ is an element of at most finitely many E_n 's.

2. Let (X, \mathcal{B}, μ) be a σ -finite measure space and let $f: X \to [0, \infty)$ be measurable. Let $E:=\{(x,y)\in X\times [0,\infty): y\leq f(x)\}$. Assign the Lebesgue measure m on $[0,\infty)$. Prove that E is a measurable set on $X\times [0,\infty)$ with respect to the product measure $\mu\times m$ and that

$$(\mu \times m)(E) = \int_X f d\mu.$$

3. Suppose that (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are measure spaces and $\Phi: X \to Y$ is a measurable map. Moreover, assume that for any measurable set $E \subset Y$, we have

$$\nu(E) = \mu(f^{-1}(E)).$$

Then for any measurable function $f:Y\to \mathbf{C}$, prove that $f\in L^1(\nu)$ if and only if $f\circ\Phi\in L^1(\mu)$, in which case,

$$\int_Y f d\nu = \int_X (f \circ \Phi) d\mu.$$

- **4.** Let $f_k \in L^1([0, 1])$ for $k \geq 1$ (with respect to Lebesgue measure), and
- assume that $\lim_{k\to\infty} \|f_k\|_{L^1([0,1])} = 0$.

 a) Show that a subsequence of $\{f_k\}_{k=1}^{\infty}$ tends to zero almost everywhere.

 b) Show by example that the sequence $\{f_k\}_{k=1}^{\infty}$ does not necessarily tend to zero almost everywhere.

- **5.** Let $1 \leq p < q < \infty$ and $n \in \mathbb{N}$.
- a) Show that the inclusions $L^p(\mathbb{R}^n) \subset L^q(\mathbb{R}^n)$ and $L^q(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$ are both false.
- b) Show that, for any $r \in (p, q)$, we have $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n) \subset L^r(\mathbb{R}^n)$, and furthermore that for $f \in L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$ we have

$$||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}, \text{ where } \alpha = \frac{p(q-r)}{r(q-p)}.$$

6. Let $p \in (1, \infty)$. Suppose that $f_n \in L^p$ converges weakly to $f \in L^p$, that is, assume

$$\lim_{n \to \infty} \int_0^1 f_n g \, dx = \int_0^1 f g \, dx$$

for all $g \in L^q([0, 1])$, where $q = \frac{p}{p-1}$.

- a) Show that $||f||_{L^p([0,1])} \leq \liminf_{n\to\infty} ||f_n||_{L^p([0,1])}$. b) Give an example where the inequality in part a) is strict.