COMPLEX ANALYSIS

Qualifying Exam

Wednesday, January 11, 2023 — 1:00 pm - 3:30 pm

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Math Exam ID #:

Problem 1.

An *entire transcendental function* is an entire function which is not a polynomial. Prove that if f is an entire transcendental function and $K \subset \mathbb{C}$ is a compact set, then $f(\mathbb{C}\backslash K)$ is dense in \mathbb{C} .

Problem 2.

- a) Give an example of a Laurent series centered at 1 that converges to the function $f(z)=\frac{z-2}{z(z-1)^2}$ in its domain of convergence.
- b) Is an example that you gave unique? Explain your answer.

Problem 3.

Suppose that the power series $\sum_{n=0}^{\infty} c_n z^n$ has positive radius of convergence, and for some $\delta > 0$ the sum is real in the interval $(-\delta, \delta)$. Prove that all coefficients c_n are real.

Problem 4.

Suppose that 0 < |a| < 1 and m is a positive integer. Prove that equation $(z-1)^m = a\mathrm{e}^{-z}$ has exactly m simple zeroes with positive real part, and that all of these zeroes are inside the disk D of radius 1 centered at 1, i.e. $D = \{z : |z-1| < 1\}$.

Problem 5.

Let $f(z) = \sum_{n \geq 0} a_n z^n$ have radius of convergence R > 0. Let $w_0 \in \partial D(0, R)$ be a point on the boundary of the disc of convergence, and suppose that for any $w \in \partial D(0, R)$, $w \neq w_0$, the function f can be analytically continued to an open set containing w.

- a) Show that f cannot be analytically continued to any open set containing the point w_0 .
- b) Is it true that there exists sufficiently small $\varepsilon > 0$ such that f can be analytically continued to the open set $D(0, R + \varepsilon) \setminus \{w_0\}$? Explain your answer (prove or give a counterexample).

Problem 6.

$$\int_0^\infty \frac{\cos x}{4x^2 - \pi^2} dx$$

Problem 7.

Let $U \subset \mathbb{C}$ be given by

$$U=\left\{z\in\mathbb{C}\mid\;|z|>1\;\;\text{and}\;\;|z-1|<2\;\right\}.$$

Find a conformal mapping from ${\cal U}$ to the unit disc.

Problem 8.

Let $\mathbb{H}=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ be the upper half plane, and $f:\mathbb{H}\to\mathbb{C}$ be holomorphic and bounded. For a given r>0 denote

$$\mathbb{H}_r = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) > r \}.$$

Prove that for any r>0 the restriction $f|_{\mathbb{H}_r}:\mathbb{H}_r\to\mathbb{C}$ is uniformly continuous.