MONODROMY MATRICES OF 1D DIFFERENTIAL OPERATOR OF ORDER 4

VADIM TKACHENKO

Let p(x) and q(x), $x \in [0, \pi]$, be a pair of real-valued functions satisfying condi-

$$\int_{0}^{\pi} (|p'(x)|^{2} + |q(x)|^{2}) dx < \infty, \tag{1}$$

and let \mathcal{L} be the differential operator

$$\mathcal{L} = \frac{d^4}{dx^4} + \frac{d}{dx} p(x) \frac{d}{dx} + q(x), \quad x \in (0, \pi).$$
 (2)

We denote by $U(x,\lambda), \lambda \in \mathbb{C}$, the fundamental matrix of the equation $\mathcal{L}u = \lambda u$, i.e., we set

$$U(x,\lambda) = ||u_k^{(j-1)}(x,\lambda)||_{k,j=1}^4, \ U(0,\lambda) = I$$

 $U(x,\lambda)=||u_k^{(j-1)}(x,\lambda)||_{k,j=1}^4,\ U(0,\lambda)=I,$ with $u_k(x,\lambda), k=1,...,4$, being solutions to the above equation. It is well known that the monodromy matrix $U(\pi, \lambda)$ contains, one way or another, all data related to the boundary problems generated by L in the interval $[0, \pi]$.

We describe the set of all 4×4 matrices $U(\lambda), \lambda \in \mathbb{C}$, which are the monodromy matrices of operators (2) restricted by condition (1).

The main tool to obtain such a description is the transformation operator introduced by Z.Leibenzon [1]-[2].

References

- [1] Z.Leibenzon, Trudy Mosc. Math. Ob., Trans. MMS, 1966, v.15, 78-163.
- [2] Z.Leibenzon, Trudy Mosc. Math. Ob., Trans. MMS, 1971, v.25, 13-61.