Print Your Exam Code: ———

Exam Time: 3:00pm-5:30pm, September 12, 2022

Table of your scores

Problem 7 ————/ 10

Problem 8 ————/ 10

Problem 1.

- (a) State the Axiom of Completeness for ${\rm I\!R}.$
- (b) Prove that a monotone increasing sequence of real numbers converges if and only if it is bounded above.

Problem 2. Let $\{f_n(x)\}_{n=1}^{\infty}$ be a sequence of continuous functions defined on [a,b]. Suppose $\sum_{n=1}^{\infty} f_n(x)$ converges pointwisely in [a,b), but $\sum_{n=1}^{\infty} f_n(b)$ diverges. Show that $\sum_{n=1}^{\infty} f_n(x)$ does not converge uniformly on [a,b).

Problem 3. Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers. Suppose that $\lim_{n\to\infty}(a_{2n}+2a_n)=0$. Prove that

$$\lim_{n\to\infty} a_n = 0.$$

Problem 4. Suppose a sequence of real valued functions $\{f_n\}$, $f_n: \mathbb{R} \to \mathbb{R}$, is given such that for all $n \in \mathbb{N}$ we have $f_n(0) = 0$, and for any $x, y \in \mathbb{R}$

$$|f_n(x) - f_n(y)| \le \max\{|x|, |y|\} \cdot |x - y|.$$

Prove that the sequence $\{f_n\}$ has a subsequence that converges pointwise on \mathbb{R} .

Problem 5. Suppose $\{a_n\}$ and $\{b_n\}$ are monotone strictly decreasing sequences of positive real numbers converging to zero. Prove that if there exists a limit

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = A,$$

then we must have $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.

Problem 6. Denote $U \subset \mathbb{R}^2$, $U = \{(x,y) : y > |x|\}$. Is it true that the map $f(x,y) = \left(\int_x^y e^{t^2} dt, \int_x^y e^{-t^2} dt\right)$ is a local diffeomorphism near every point $(x,y) \in U$? Explain your answer.

Problem 7. Let
$$\Sigma=\left\{(x,y,z)\in\mathbb{R}^3:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\right\}$$
. Compute the integral
$$\int_\Sigma x^3\,dydz+y^3\,dzdx+z^3dxdy.$$

Problem 8. Prove or disprove that $f(x) = \ln(1+x^2+y^2) + \sin(x^2)$ is uniformly continuous on \mathbb{R}^2 .

Problem 9. Let (M,d) be a bounded metric space that has the following property: for any sequence $\{x_n\} \subset M$ with $d(x_n,x_{n+1}) \leq \frac{1}{n}$ there exists a convergent subsequence. Does it imply that (M,d) is compact? Prove or give a counterexample.