Complex Analysis Qualifying Exam

September 15, 2022

Math Exam ID:			
1	_ /10		
2	_ /10		
3	_ /10		
4	_ /10		
5	_ /10		
6	_ /10		
7	_ /10		
8	_ /10		

Math	Exam	ID:

Problem 1: Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function such that |Re(f(z))| < 1 for all $z \in \mathbb{D}$. Show that $|f'(0)| \le 2$.

Math	Exam	ID:		

Problem 2: Let f be an entire function. Show that the following series converges uniformly on compact subsets of \mathbb{C} :

$$\sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n^n}.$$

Math Exam ID:

Problem 3: Let f be an entire function. Suppose the family

$$\mathcal{F} = \{f_n; f_n(z) = f(nz)\},\$$

is a normal family on the annulus $\{1 < |z| < 2\}$. Show that f is a constant.

Math	Exam	$\mathbf{ID} \cdot$	

Problem 4: Let p,q be polynomials on $\mathbb C$ and assume that

$$p(0) = 0, \quad p'(0) \neq 0,$$

and |p(z)| > 0, for all $0 < |z| \le 1$.

- (i) Show that there exists $\delta > 0$ such that for all $\varepsilon \in \mathbb{C}$, $|\varepsilon| < \delta$, the polynomial $z \mapsto p(z) + \varepsilon q(z)$ has a unique root $z(\varepsilon) \in \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, which is simple.
- (ii) Prove that the function $\varepsilon \mapsto z(\varepsilon)$ is holomorphic on $\{\varepsilon \in \mathbb{C} : |\varepsilon| < \delta\}$.

Math	Exam	ID:		
maun	Exam	ID:		

Problem 5: Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Determine all holomorphic functions $f: \mathbb{C}_+ \to \mathbb{C}$ that satisfy $f(i\sqrt{n}) = n$ and $|f^{(n)}(i)| \leq 3$ for $n = 1, 2, \ldots$

Math	Exam	ID:		
maun	Exam	ID:		

Problem 6: Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$. Let f be holomorphic in a neighborhood of $\overline{\mathbb{D}}$, which satisfies

$$|f(0)| + |f'(0)| < \inf \{|f(z)| : |z| = 1\}.$$

Show that f has at least two zeros (counting multiplicity) in \mathbb{D} .

Math	Exam	ID:

Problem 7: Let $\Omega \subset \mathbb{C}$ be open bounded simply connected and let $f: \Omega \to \Omega$ be holomorphic such that f(0) = 0, |f'(0)| < 1. Let

$$f^{(n)} = f \circ f \circ \cdots \circ f$$

be the *n*-fold composition of f with itself, $n=1,2,\ldots$ Show that $f^{(n)}\to 0$ uniformly on compact subsets of Ω , as $n\to\infty$.

Math	Exam	ID:

Problem 8: Suppose f and g are entire functions with no common zeros. Show that there exist entire functions F and G such that

$$fF + gG = 1.$$