Speaker: 

Yng-Ing Li

Institution: 

National Taiwan University

Time: 

Tuesday, April 17, 2007 - 3:00pm

Location: 

MSTB 254

In this talk, I will report a recent joint work with Mu-Tao Wang. We construct examples of shrinkers and expanders for Lagrangian mean curvature flows. These examples are Hamiltonian stationary and asymptotic to the union of two Hamiltonian stationary cones found by Schoen and Wolfson. The Schoen-Wolfson cones are obstructions to the existence problems of special Lagragians or Lagrangian minimal surfaces in the variational approach. It is known that these cone singularities cannot be resolved by any smooth Lagrangian submanifolds. The shrinkers and expanders that we found can be glued together to yield solutions of the Brakke motion-a weak formulation of the mean curvature flow, and thus provide a canonical way to resolve the union of two such cone singularities. Our theorem is analogus to the Feldman-Ilmanen-Knopf gluing construction for the K\"ahler-Ricci flows.